首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3749篇
  免费   277篇
  国内免费   19篇
工业技术   4045篇
  2024年   9篇
  2023年   83篇
  2022年   117篇
  2021年   272篇
  2020年   187篇
  2019年   250篇
  2018年   248篇
  2017年   256篇
  2016年   237篇
  2015年   183篇
  2014年   231篇
  2013年   404篇
  2012年   274篇
  2011年   337篇
  2010年   190篇
  2009年   154篇
  2008年   110篇
  2007年   77篇
  2006年   62篇
  2005年   32篇
  2004年   26篇
  2003年   33篇
  2002年   25篇
  2001年   19篇
  2000年   20篇
  1999年   9篇
  1998年   14篇
  1997年   10篇
  1996年   13篇
  1995年   9篇
  1994年   12篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   10篇
  1986年   10篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1978年   4篇
  1977年   10篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1972年   4篇
排序方式: 共有4045条查询结果,搜索用时 15 毫秒
31.
Semiconductor photocatalysts play a crucial role when it comes to environmental issues such as global warming, pollutant degradation, fuel shortage, and energy crisis. In this paper, three nanostructured compound (3‐, 4‐, and 5‐component) semiconductor materials were synthesized through a facile one‐pot hydrothermal method, and were applied as alloy photocatalysts to generate hydrogen fuel via a water photo‐splitting process. Nitrogen adsorption–desorption isotherms revealed that the synthesized materials were all mesoporous and the highest surface area was witnessed for Ag‐doped quinary photocatalyst, viz. Cd0.1Zn0.87Sn0.01Ag0.01S (CZTSS). This heterogeneous photocatalyst exhibited a maximum performance in evolving hydrogen gas. The superiority of CZTSS was justified in terms of its greater surface area, higher conduction band and its silver plasmon resonance, enhancing the light absorption at long wavelengths. Field emission scanning electron microscopy revealed a spectacular nanostructure for this photocatalyst that was comprised of nanoparticles, platelets, and microspheres attached together. Energy dispersive X‐ray (EDX) analyses of the CZTSS also proved the synthesis of the quinary photocatalyst, having different compositions in distinct zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
32.
Heavy metals (Hg, Cd, Pb, etc.) are micro-pollutants and result in water contamination. Significant bio-concentration of heavy metal like Hg can lead to fatal disease such as Minamata. Given this context, heavy metal removal from wastewater is essential before discharge. The wastewater treatment process requires considerable amount of energy which is being met by the conventional carbon-based fuels. This contributes to the global carbon dioxide emission, and hence global warming. Therefore, if clean energy sourcing is enabled during the treatment of the wastewater; it would offer obvious advantages. If the energy production is ‘clean’ and achieved via the process itself, it would serve two outcomes: (a) meeting the energy demand for wastewater treatment, and (b) getting rid of the need for external ‘carbon-based’ energy. Recently a few research articles have reported simultaneous clean energy production from wastewater during its treatment. Thus, the energy demand of the wastewater treatment process can be potentially met with the clean energy produced during the process. In this review, we will discuss mercury-contaminated wastewater treatment with simultaneous hydrogen production. We will provide a brief overview of waste-to-wealth approaches currently prevailing in water economy, recent mercury removal processes, and discuss future possibilities of self-sustained Hg-contaminated wastewater treatment.  相似文献   
33.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m3/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand‐alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost‐effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.  相似文献   
34.
35.
In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds on Ti-6Al-4V substrate have been studied. Initially, nickel was electrodeposited on the alloy using a modified Watts bath solution at a current density of 2 A dm?2 for 1?h. The coated specimens were then heat treated for different durations at 750, 800 and 850 °C under argon atmosphere. The effects of temperature and time on the characteristics, hardness and wear resistance of intermetallic phases were investigated. The results showed that a multilayer structure was formed after heat treatment, an outer layer of residual nickel, an area of intermetallic layers with different compositions followed by a solid solution of Ni-Ti. It was also observed that an increase in time or temperature at first led to the formation of thicker intermetallic layers; however, after passing a critical point, the intermetallic layers seem to dissolve into the substrate. Furthermore, the wear rates of the diffusion treated samples were four times lower compared to Ti-6Al-4V alloy when sliding against AISI 52100 hardened steel.  相似文献   
36.
37.
Rohanda  Anis  Waris  Abdul  Kurniadi  Rizal  Bakhri  Syaiful  Pardi  Pardi  Haryanto  Dwi 《核技术(英文版)》2020,31(11):1-11
Nuclear Science and Techniques - This study presents the RF design of a linear accelerator (linac) operated in single-bunch mode. The accelerator is powered by a compressed RF pulse produced from a...  相似文献   
38.
Wireless Personal Communications - Due to using wireless sensor nodes (WSNs) in inaccessible areas and applying limitations in making nodes to reduce costs, these networks are prone to faults. The...  相似文献   
39.
40.
We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号